
ESR Consortium
SP-2.0

Shielded Plug
Profile Specification

ESR0014

Reference: ESR-SPE-0014-SP
Version: 2.0
Rev: A

DEFINITIONS

"ESR" means the Specification, including any modifications and upgrades, where these terms have
been stated or referred to, and made available to You by ESR Consortium, including without
limitation, texts, drawing, codes and examples.

"ESR Consortium" means the non-profit entity, registered in France in accordance with the French
law of 1901.

"You" means the legal entity or entities represented by the individual executing this Agreement.

READ RIGHTS

Subject to the terms and conditions contained herein, ESR Consortium grants to You a non-
exclusive, non-transferable, worldwide, and royalty-free license to view and read the ESR solely
for purposes of Your internal evaluation.

GENERAL TERMS

THIS DOCUMENTATION IS PROVIDED "AS IS", WITHOUT WARRANTIES OF ANY KIND,
EITHER EXPRESS OR IMPLIED.

THE READING OF THE ESR AND ALL CONSEQUENCES ARISING THEREOF IS YOUR
SOLE RESPONSIBILITY. ESR CONSORTIUM SHALL NOT BE LIABLE TO YOU FOR ANY
LOSS OR DAMAGE CAUSED BY, ARISING FROM, DIRECTLY OR INDIRECTLY, OR IN
CONNECTION WITH THE ESR.

COPYRIGHT

ESR Consortium does claim any right in this ESR. You are free to use this ESR to make any clean
room implementations or derivative work as long as You don't claim that Your work is compliant
with the ESR. Compliance tests are available from the ESR Consortium.

MISCELLANEOUS

This Agreement shall be governed by, and interpreted in accordance with French Law. In no event
shall this Agreement be construed against the drafter.

This Agreement contains the entire understanding between the parties concerning its subject matter
and supersedes any other agreement or understanding, whether written or oral, which may exist or
have existed between the parties on the subject matter hereof.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION.

ESR CONSORTIUM MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN ANY ESR PUBLICATION AT
ANY TIME.

Trademarks
Java™ is Sun Microsystems' trademark for a technology for developing application software and
deploying it in cross-platform, networked environments. When it is used in this documentation
without adding the ™ symbol, it includes implementations of the technology by companies other
than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun
Microsystems Inc, in the United States and other Countries.

ESR0014 - SP 2.0 (SHIELDED PLUG)

Contents
1 Preface to SP 2.0 Profile, ESR0014 ...1

1.1 Who Should Use this Specification..1
1.2 How This Specification is Organized...1
1.3 Comments..1
1.4 Glossary..1
1.5 Related Literature..1
1.6 Document Conventions...1
1.7 Implementation Notes..1

2 Introduction..2
2.1 General description...2
2.2 Genesis...2
2.3 Main functionalities...3

3 Specification...3
3.1 Databases...3
3.2 Correspondence between Java and C types...5
3.3 Atomicity and execution time..5
3.4 Reading data..6
3.5 Writing data..6
3.6 Notification of modification...7

4 Use case...8
4.1 Java Code...9
4.2 C Code ...10

5 API...12
5.1 C Header File: sp.h..12

V

ESR0014 - SP 2.0 (SHIELDED PLUG)

Tables
Table 3-1: XML description of databases...4
Table 3-2: Correspondence between Java and C types..5

VI

ESR0014 - SP 2.0 (SHIELDED PLUG)

Illustrations
Figure 2-1: The Publish/Subscribe Concept..2
Figure 3-1: Example of a database having four blocks of different sizes...3
Figure 3-2: Example of database description file..5

VII

ESR0014 - SP 2.0 (SHIELDED PLUG)

1 PREFACE TO SP 2.0 PROFILE, ESR0014
This document defines the, SP 2.0 profile , targeting Embedded Platforms.

1.1 Who Should Use this Specification
This specification targets the following audiences:

• ESR Consortium Members who want to build implementation that complies to the SP
profile specification.

• Application developers designing application using the SP.

1.2 How This Specification is Organized
This specification is organized as follow:

• Introduction is a short chapter explaining what is SP, why it has been designed and what
are its main assets.

• Specification describes concepts and semantics.

• SP API Documentation lists the SP APIs in as javadoc.

1.3 Comments
Your comments about SP are welcome. Please send them by electronic mail to the following
address: comments @e-s-r.net , with SP in your subject line.

1.4 Glossary
• ESR: Embedded Specification Request

• baremetal: a Java virtual machine is said to be baremetal when it does not require an
OS/RTOS to run. A baremetal Java virtual machine is in fact an OS/RTOS that also embeds
a Java engine. The device boots directly in Java.

1.5 Related Literature

1.6 Document Conventions
In this document, references to methods of a Java class are written as
ClassName.methodName(args). This applies to both static and instance methods. Where the
method is static this will be made clear in the accompanying text.

1.7 Implementation Notes
The SP specification does not include any implementation details. SP implementors are free to use
whatever techniques they deem appropriate to implement the specification, with (or without)
collaboration of any Java virtual machine provider. SP experts have taken great care not to mention
any special Java virtual machines, nor any of their special features, in order to encourage fair
competing implementations.

1/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

2 INTRODUCTION

2.1 General description
Lots of highly secure applications have software architectures based on processes which run
independently with no interactions except some data exchanges. Data are published in a shared
space between producers who « Publish » and users who « Subscribe » to the data.

This kind of architecture is common in industrial control, automatic system supervision, telecoms,
and all applications which need to propagate data asynchronously.

This specification SP ShieldedPlug offers a well-defined segregation between producers and
consumers of data. Processes which publish data have a minimal semantic relation to data
subscribers. Also thanks to the same mechanism the processes using the data don't need to be
aware of the producers.

Data published are copies of the original data, providing complete isolation between producers and
consumers.

2.2 Genesis
SP is driven by three factors: most software1 is written in Java and in C; soon lots of software will
have to be certified; and most micro-controllers are used for devices which have limited resources
in terms of calculation capability and memory capacity.

Most critical software is certified by following a Security Insurance approach (by analogy to
Quality Insurance). The level of trust needed by the software is obtained thanks to the strict
application of engineering rules. Those rules have been established after years of experience.. Due

1 The word software refers to all programs executing on a program unit, which is likely to be a micro-
controller.

2/41

Figure 2-1: The Publish/Subscribe Concept

publish

publish

publish
read

read

read

producer
X

producer
Y

producer
Z

notify user
T

user
U

data
data
data
data

user
V

B4

10
1F
B0

ESR0014 - SP 2.0 (SHIELDED PLUG)

to the complex nature of software programming – an intellectual activity – the main concepts of
software certification is: “software failures have only one origin: the software engineering”.
Therefore, the concepts used to write programs are chosen to minimize the probability of
introducing a software error and also to minimize the impact of potential errors by using isolation.
However, typically those rules are not scientifically proven by any mathematical approach.

A software architecture that minimizes the effects of programming errors (defensive
programming), associated with a suitable development process, allows segregation of the
functional parts into different layers of trust. The safer parts are much more expensive to produce.
The SP specification is born from the desire to provide a framework for safe sharing of data
between different processes (either in C or Java) while keeping in mind that the software will be
run on devices where costs matter a lot.

2.3 Main functionalities
SP provides segregation of the processes, which can be written either in C or in Java. It allows the
certification of each individual part separately.

The data sharing between processes uses the concept of shared memory blocks, with introspection
on those blocks. Facilities provided include: notification when the content changes, re-
initialization of the block, testing the presence of data in the data block, and a mechanism for
serialization and de-serialization.

SP allows the creation of several data stores. These can be defined entirely statically, or increase in
number during the execution of a program.

Reading and writing in the shared memory are operations with predictable performance
characteristics.

3 SPECIFICATION
The Java API chapter at the end of the document is part of the specification.

3.1 Databases
SP uses the notion of databases. Several databases can exist on the same system. In Java each
database is an instance of the class ShieldedPlug. In C each database is an instance of the
structure ShieldedPlug. A database is made up of blocks that cannot be divided. Each block is a
memory space with contiguous addresses, and has a unique identifier (called an index) defined by
an int. The size of a block is defined at construction time and cannot be modified.

3/41

Figure 3-1: Example of a database having four blocks of different sizes

block 1
block 2
block 3

block 4B4

10
1F
B0

database
indexes contiguous memory

blocks

ESR0014 - SP 2.0 (SHIELDED PLUG)

A database can optionally be defined with a fixed number of indexes and memory blocks. If that is
the case it is defined as immutable, and ShieldedPlug.isImmutable() returns true. If not, a
memory block can be destroyed by using ShieldedPlug.delete(int), and created by
specifying an ID, a size, and the number of tasks that can wait for this block, using
ShieldedPlug.create(int,int,int).

The number of memory blocks used by a database can be obtained using
ShieldedPlug.getSize(). The list of the IDs of all memory blocks in the database can be
obtained using ShieldedPlug.getIDs(). Finally, the length of a block with a particular ID is
obtained using ShieldedPlug.getLength(int).

A database has its own unique ID (using an int value), which identifies it. The static method
ShieldedPlug.getDatabase(int) returns the database with the provided ID.

If the system allows the creation of new databases at runtime, the static method
ShieldedPlug.createDatabase(int) returns a new database (or null if creations are
forbidden).
//Main APIs in Java
int getSize();
int[] getIDs();
int getLength(int blockID);
static ShieldedPlug getDatabase(int ID);

//Main APIs in C
int32_t SP_getSize(ShieldedPlug sp);
int32_t SP_getIDs(ShieldedPlug sp, int32_t* IDs, int32_t* length);
int32_t SP_getLength(ShieldedPlug sp, int32_t blockID);
ShieldedPlug SP_getDatabase(int32_t ID);

The database display method ShieldedPlug.toString() produces an XML description of the
database structure. This description can be used by third-party software as an input if the software
uses the same specification.

Tag name Description Attribute(s)
shieldedPlug Root element.
database Defines a database version : string, context specific.

name : string, name used to generate the database
in the C header and in the Java interface.
id : int, unique id for a database in the program.
immutable : true or false. If not mentioned,
defaults to true.

block Defines each block id : int, unique id for a block in a database.
name : string, name used to generate constants in
the C header and in the Java interface.
length : int, the number of bytes in the block.
maxTasks : int, indicates the maximum number
of tasks that can wait for this block. If not
mentioned, unlimited. This field may be mandatory
on certain targets.

Table 3-1: XML description of databases

4/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

Figure 3-2 shows an example of a produced description file.

<shieldedPlug>
 <database name="MyBase" id="0" immutable="true" version="2.1.2">
 <block id="0x10" name="TEMP" length="100" maxTasks="1"/>
 <block id="0x1F" name="V0" length="50" maxTasks="2"/>
 <block id="0xB0" name="V1" length="75" maxTasks="4"/>
 <block id="0xB4" name="I0" length="25" maxTasks="1"/>
 </database>
</shieldedPlug>

Figure 3-2: Example of database description file

3.2 Correspondence between Java and C types
Depending on the language used to access to a database, types have different names.

Java Specification C
void void void

boolean 8 bits,only two values uint8_t

byte 8 bits, signed int8_t

char 16 bits, unsigned uint16_t

short 16 bits,signed int16_t

int 32 bits, signed int32_t

long 64 bits,signed int64_t

float IEEE 754 on 32 bits float

double IEEE 754 on 64 bits double

Table 3-2: Correspondence between Java and C types

3.3 Atomicity and execution time
All access to a database is serialized by the implementation: there will be only one access (either
read or write) at a time. Each access is atomic whatever the number of bytes. All bytes of a block
are processed as one operation, it also means the byte array size for a read or a write operation
should exactly match the block size. This avoids inconsistency.

A database does not use a separate thread to execute requests; each request executes in the context
of the calling thread.

Database access is forbidden in an interrupt context.

Read/Write access time of a block depends only on the size of the block, and is independent of the
size and complexity of the database.

5/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

3.4 Reading data
A read is done on a specific memory block identified by its ID. The general reading method
ShieldedPlug.read(int, byte[]) fills the byte array with all the data held in the block
(identified by the first parameter).

Additional methods are provided to read the base types directly, such as readInt, readLong,
readFloat, readDouble. Repeated calls to these methods will return the same value, assuming
there have been no interleaving writes to the block.

Errors use two different mechanisms: in C a negative return code is used, in Java the exception
mechanism is used. The following errors can occur: invalid memory block ID, the block length is
different from the size of the provided byte array, data is not available from this memory block.

It is possible to de-serialize a memory block to an object by associating a memory block with a
reader that implements the SPReader interface. The method
ShieldedPlug.readObject(int) returns an object by invoking the specified reader with the
method SPReader.readObject(ShieldedPlug sp, int id).
The association of a reader with a memory block is made with the method
ShieldedPlug.setReader(SPReader, int).
//Main Java APIs
void read (int blockID, byte[] data) throws EmptyBlockException;
int readInt (int blockID) throws EmptyBlockException;
float readFloat (int blockID) throws EmptyBlockException;
long readLong (int blockID) throws EmptyBlockException;
double readDouble(int blockID) throws EmptyBlockException;
Object readObject(int blockID) throws EmptyBlockException;
void setReader (int blockID, SPReader r);

In the C language, the first parameter of the call is what would in Java be the method receiver: a
reference to the database which we are working on.
//Main C APIs
int32_t SP_read (ShieldedPlug sp, int32_t blockID, void* buff, int32_t
size);

3.5 Writing data
A write is done on a specific memory block identified by its ID. The general writing method
ShieldedPlug.write (int, byte[]) writes the provided byte array into the block
(identified by the first parameter).

Additional methods are provided to write the base types directly, such as writeInt,
writeLong, writeFloat, writeDouble. When using these methods a block is assumed to
hold only a single value, which might not occupy the whole block. Repeated calls to these methods
will overwrite the previous value.

Errors use two different mechanisms: in C a negative return code is used, in Java the exception
mechanism is used. The following errors can occur: invalid memory block ID, the block length is
different from the size of the provided byte array.

It is possible to serialize a memory block to an object by associating a memory block with a
specific writer implementing the SPWriter interface. The method

6/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

ShieldedPlug.writeObject(int,Object) invokes the specified writer with a call to the
method SPWriter.writeObject(ShieldedPlug sp, int id, Object o).

The association of a writer with a memory block is made with the method
ShieldedPlug.setWriter(SPWriter, int).

//Main Java APIs
void write (int blockID, byte[] data);
void writeInt (int blockID, int data);
void writeFloat (int blockID, float data);
void writeLong (int blockID, long data);
void writeDouble(int blockID, double data);
void writeObject(int blockID, Object o);
void setWriter (int blockID, SPWriter w);

In the C language, the first parameter of the call is what would in Java be the method receiver: a
reference to the database which we are working on.
//Main C APIs
int32_t SP_write(ShieldedPlug sp, int blockID, void* buff);

3.6 Notification of modification
Each memory block has a flag that indicates that an update has occurred since the last read. It is
possible to test this state : ShieldedPlug.isPending(int). This flag is set to false when
reading, and to true when writing.

A task can wait for the modification of a memory block by using
ShieldedPlug.waitFor(int). This method suspends the current task if and only if the method
pending returns false on the specified memory block. A task can also wait on several memory
blocks, the task is released when one of the blocks is modified
(ShieldedPlug.waitFor(int[])).

A memory block can have a limit to the number of tasks potentially waiting for it (cf 3.1).
ShieldedPlug.getMaxTasks(id) returns the maximum number of tasks, or -1 if this number
is infinite.

Also, a memory block has a flag indicating if its data are available or not. This flag is initially false
and is set to true when writing data. It can be set to false using the method
ShieldedPlug.reset(int). It is possible to test this flag using
ShieldedPlug.isDataAvailable(int).

7/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

//Main Java APIs
boolean isPending(int blockID);
boolean isDataAvailable(int blockID);
boolean reset(int blockID);
void waitFor(int blockID) throws InterruptedException;
int[] waitFor(int[] blockIDs) throws InterruptedException;
//Main C APIs
int32_t SP_isPending(ShieldedPlug sp, int32_t blockID);
int32_t SP_isDataAvailable(ShieldedPlug sp, int32_t blockID);
int32_t SP_reset(ShieldedPlug sp, int32_t_t blockID);
int32_t SP_waitFor(ShieldedPlug sp, int32_t blockID);
int32_t SP_waitFor(ShieldedPlug sp, int32_t* blockIDs, int32_t*
modifiedIDs, int32_t* length);

4 USE CASE
Below is an example of using a database SP. The code that publishes the data is written in C, and
the code that receives the data is written in Java. The data is transferred using two memory blocks.
One is a scalar value, the other is a more complex object representing a two dimensional vector.

The database is described as follows:

8/41

publish

publish

wait

read

Wind speed
and direction
calculation

in C

temperature
calculation

in C

shutter motor
control
in java

display
temperature

in Java

thermostat
controller

in C

wait

write

int
int, int00

01

Database
ID 0

int02

ESR0014 - SP 2.0 (SHIELDED PLUG)

<shieldedPlug>
 <database name="Forecast" id="0" immutable="true" version="1.0.0">
 <block id="0" name="WIND" length="8" maxTasks="1"/>
 <block id="1" name="TEMP" length="4" maxTasks="1"/>
 <block id="2" name="THERMOSTAT" length="4" maxTasks="1"/>
 </database>
</shieldedPlug>

4.1 Java Code
From the database description we can create a Java interface.
public interface Forecast {

public static final int ID = 0;
public static final int WIND = 0;
public static final int TEMP = 1;
public static final int THERMOSTAT = 2;

}

Here are the implementations of the Wind class and its reader, which de-serializes it: first int is
the speed and second is the direction.
public class Wind {

public int speed; //in ms [0..]
public int direction; //in degree [0..360]

}

import ej.bon.ByteArray;
public class WindReader implements SPReader {

private static final int SPEED = 0;
private static final int DIRECTION = 4;
public Object readObject(ShieldedPlug database, int blockID)

 throws EmptyBlockException {
Wind w = new Wind();
byte[] data = new byte[database.getLength(blockID)];
database.read(blockID, data);
w.speed = ByteArray.readInt(data, SPEED);
w.direction = ByteArray.readInt(data, DIRECTION);
return w;

}
}

Below is the task that reads the published wind data.

9/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

static {
ShieldedPlug.getDatabase(Forecast.ID).setReader(Forecast.WIND,

 new WindReader());
}
public void run(){

ShieldedPlug database = ShieldedPlug.getDatabase(Forecast.ID);
try{

while (isRunning){
///reading the wind when changing
database.waitFor(Forecast.WIND);
Wind w = (Wind) database.readObject(Forecast.WIND);
execute(calculation(w));

}
}
catch(EmptyBlockException e){

print("Error");
}
catch(InterruptedException e){

//the current task has been interrupted
}

}

Below is the task that reads the published temperature and controls the thermostat.
public void run(){

ShieldedPlug database = ShieldedPlug.getDatabase(Forecast.ID);
while (isRunning){

//reading the temperature every 30 seconds
//and update thermostat status
try {

int temp = database.readInt(Forecast.TEMP);
print(temp);
//update the thermostat status
database.writeInt(Forecast.THERMOSTAT,

temp>tempLimit ? 0 : 1);
}
catch(EmptyBlockException e){

print("Temperature not available");
}
sleep(30000);

}
}

4.2 C Code
C header that declares the constants defined in the XML description of the database.
#define Forecast_ID 0
#define Forecast_WIND 0
#define Forecast_TEMP 1
#define Forecast_THERMOSTAT 2

Publication of wind and temperature is performed by two functions.

10/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

#include <sp.h>
struct Wind {

int32_t speed;
int32_t direction;

};
void windPublication(){

struct Wind w;
ShieldedPlug database = SP_getDatabase(Forecast_ID);
w.speed = speed();
w.direction = direction();
SP_write(database, Forecast_WIND, &w);

}
void temperaturePublication(){

ShieldedPlug database = SP_getDatabase(Forecast_ID);
int32_t temp = temperature();
SP_write(database, Forecast_TEMP, &temp);

}

Thermostat controller task waits for data from the ShieldedPlug.
#include <sp.h>
void thermostatTask(){

int32_t thermostatOrder;
ShieldedPlug database = SP_getDatabase(Forecast_ID);
while(1){

SP_waitFor(database, Forecast_THERMOSTAT);
SP_read(database, Forecast_THERMOSTAT, &thermostatOrder);
if(thermostatOrder == 0) {

thermostatOFF();
}
else {

thermostatON();
}

}
}

11/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

5 API

5.1 C Header File: sp.h
/*
 * Copyright ESR consortium. All rights reserved.
 * Modification and distribution is permitted under certain conditions.
 * PROPRIETARY : use is subject to license terms.
 */
/*
 * Header file for Shielded Plug (SP), version 1.1
 */
#ifndef SP_H
#define SP_H
#include <stdint.h>
#define SP_SUCCESS 0 //function succeeded
#define SP_ERR_INVALID_BLOCK_ID -1 //invalid block ID
#define SP_ERR_EMPTY_BLOCK -2 //no data available in the block
#define SP_ERR_INTERRUPTED -3 //current thread has been interrupted
#define SP_ERR_TOO_MANY_WAITING_THREADS -4 //the limit on the number of threads waiting

 //on a block has been reached

typedef void* ShieldedPlug;
/*
 * Returns the database identified by the given ID, or 0 if ID is undefined.
 */
ShieldedPlug SP_getDatabase(int32_t ID);
/*
 * Returns the number of blocks in the given database.
 */
int32_t SP_getSize(ShieldedPlug sp);
/*
 * Fills the given array with the IDs of the blocks available in this database.
 * If length is lower than the number of blocks in the database, only length IDs are
 * copied.
 * If length is greater than the number of blocks in the database, the array is only
 * partially filled.
 *
 * Returns the number of blocks in the given database.
 */
int32_t SP_getIDs(ShieldedPlug sp, int32_t* blocksIDs, int32_t length);
/*
 * Returns the length in bytes of the block with the given ID.
 * Returns <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_getLength(ShieldedPlug sp, int32_t blockID);
/*
 * Returns the maximum number of tasks that can wait at the same time on the block defined
 * with the given ID.
 *
 * Returns <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_getMaxTasks(ShieldedPlug sp, int32_t blockID);
/*
 * Fills the given buffer with data from the block with the given ID.
 * The number of bytes read is equal to the block size.
 *
 * Returns <code>SP_SUCCESS</code> on success, otherwise returns one of the following
 * errors:
 * - <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 * - <code>SP_ERR_EMPTY_BLOCK</code> if no data available in the block.
 */
int32_t SP_read (ShieldedPlug sp, int32_t blockID, void* buff);

12/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

/*
 * Writes bytes from the given buffer to the block with the given ID.
 * The number of written bytes is equal to the block size. If any tasks are waiting for
 * data to be written to this block they are all unblocked.
 *
 * Returns <code>SP_SUCCESS</code> on success, otherwise returns one of the following
 * errors:
 * - <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_write(ShieldedPlug sp, int32_t blockID, void* buff);
/*
 * Causes current thread to wait until another thread writes data into the block with the
 * given ID.
 * If data has been written in the block since the last read, this method returns
 * immediately.
 *
 * Returns <code>SP_SUCCESS</code> on success, otherwise returns one of the following
 * errors:
 * - <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 * - <code>SP_ERR_TOO_MANY_WAITING_THREADS</code> if the limit on the number of threads
 * waiting on the block has been reached.
 * - <code>SP_ERR_INTERRUPTED</code> if another thread has interrupted the current thread.
 */
int32_t SP_waitFor(ShieldedPlug sp, int32_t blockID);
/*
 * Causes current thread to wait until another thread writes data into one of the specified
 * blocks.
 * If data has been written in one of the specified blocks since the last read from it,
 * this method returns immediately.
 *
 * Parameters:
 * - blocksIDs: list of block IDs.
 * - modifiedIDs: filled with the list of IDs of the blocks that have been written to.
 * - length: before the call: the number of IDs in blocksIDs; after the call: the
 * number of IDs in modifiedsIDs.
 *
 * Returns <code>SP_SUCCESS</code> on success, otherwise returns one of the following
 * error:
 * - <code>SP_ERR_INVALID_BLOCK_ID</code> if one of the ID does not correspond to an
 * existing block.
 * - <code>SP_ERR_TOO_MANY_WAITING_THREADS</code> if the limit on the number of threads
 * waiting on a block has been reached.
 * - <code>SP_ERR_INTERRUPTED</code> if another thread has interrupted the current
 * thread.
 */
int32_t SP_waitForSeveral(ShieldedPlug sp, int32_t* blockIDs, int32_t* modifiedIDs,
int32_t* length);
/*
 * Returns 1 if data has been written into the block since last read, 0 otherwise.
 * Returns <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_isPending(ShieldedPlug sp, int32_t blockID);
/*
 * Indicates whether or not data are available in the block with the given ID.
 * Initially no data are available in a block. When data are written in a block, they
 * remain available until method SP_reset(ShieldedPlug, int32_t) is called.
 *
 * Returns 1 if data are available in the block, 0 otherwise.
 * Returns <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_isDataAvailable(ShieldedPlug sp, int32_t blockID);
/*
 * Resets (clears) data of the block with the given ID.
 * After execution, SP_isDataAvailable method would return
 * 0 (unless data were written after calling SP_reset and before
 * calling SP_isDataAvailable).
 *
 * Returns <code>SP_SUCCESS</code> on success, otherwise returns
 * <code>SP_ERR_INVALID_BLOCK_ID</code> if no block is defined with the given ID.
 */
int32_t SP_reset(ShieldedPlug sp, int32_t blockID);
#endif /* SP_H */

13/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

14/41

ESR0014 - SP 2.0 (SHIELDED PLUG)

Package Summary Page

ej.sp Contains Shielded Plug classes (ESR014). 16

15/41

Package ej.sp

Package ej.sp

Contains Shielded Plug classes (ESR014).

See:
Description

Interface Summary Page

SPReader The SPReader interface provides a method for reconstructing objects from a block. 31

SPWriter The SPWriter interface provides a method for serializing objects into a block. 32

Class Summary Page

ShieldedPlug A shielded plug is a database that contains several memory blocks. 18

Exception Summary Page

EmptyBlockExc
eption Thrown by methods in ShieldedPlug class to indicate that no data is available in a block. 17

TooManyWaitin
gThreadsExcepti
on

Signals that too many threads are waiting for a block. 33

Package ej.sp Description

Contains Shielded Plug classes (ESR014).

Page 16 of 41

Class EmptyBlockException

Class EmptyBlockException
ej.sp

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 ej.sp.EmptyBlockException

All Implemented Interfaces:
Serializable

public class EmptyBlockException
extends Exception

Thrown by methods in ShieldedPlug class to indicate that no data is available in a block.

Constructor Summary Page

EmptyBlockException()
Builds a new EmptyBlockException with null as its error message string.

17

Constructor Detail

EmptyBlockException

public EmptyBlockException()

Builds a new EmptyBlockException with null as its error message string.

Class ShieldedPlug

Class ShieldedPlug
ej.sp

java.lang.Object

 ej.sp.ShieldedPlug

public class ShieldedPlug
extends Object

A shielded plug is a database that contains several memory blocks.

A shielded plug can be created at runtime using createDatabase(int) or be created at startup and retrieved by getDatabase(int).

The list of memory blocks IDs can be retrieve using getIDs().
There are two sorts of shielded plugs:

1. The immutable ones (isImmutable()) that cannot be modified.
2. The mutable ones (!isImmutable()) can be modified by adding or removing blocks using create(int, int) or create(int, int,

int) or delete(int).

Each block has fixed length (getLength(int) passing the block ID).
All access to a database is serialized by the implementation: there will be only one access (either read or write) at a time. Each
access to a block is atomic, this avoids inconsistency:

• It can be read using one of the read methods that match its length.
• It can be written using one the write methods that match its length.

Each memory block has a flag that indicates that an update has occurred since the last read. It is possible to test this state:
isPending(int). This flag is set to false when reading, and to true when writing.

A task can wait for the modification of a memory block by using waitFor(int). This method suspends the current task if and only
if the method pending returns false on the specified memory block. A task can also wait on several memory blocks, the task is
released when one of the blocks is modified waitFor(int[])).

Each memory block has a flag indicating if its data are available or not. It is possible to test this flag using isDataAvailable(int).
This flag is initially false and is set to true when writing data. It can be set to false using the method reset(int).

Method Summary Page
void create(int blockID, int length)

Creates a block with the given ID.
21

void create(int blockID, int length, int maxTasks)
Creates a block with the given ID.

21

static
ShieldedPlug

createDatabase(int ID)
Creates a new empty database with the given ID.

20

void delete(int blockID)
Deletes the block with the given ID.

21

static
ShieldedPlug

getDatabase(int ID)
Returns the database defined at the given ID.

20

int getID()
Gets the ID of this database.

22

int[] getIDs()
Gets the list of IDs of the blocks available in this database.

22

Class ShieldedPlug

int getLength(int blockID)
Returns the length of the block with the given ID.

22

int getMaxTasks(int blockID)
Gets the maximum number of tasks that can wait at the same time on the block defined with the

given ID.
22

SPReader getReader(int blockID)
Gets the SPReader used to de-serialize objects from the block with the given ID.

If no SPReader is defined for the block, null is returned.
26

int getSize()
Gets the number of blocks of this database.

22

SPWriter getWriter(int blockID)
Gets the SPWriter used to serialize objects into the block with the given ID.

If no SPWriter is defined for the block, null is returned.
28

boolean isDataAvailable(int blockID)
Determines whether data in the block with the given ID are available or not.

By default no data is available in a block.
30

boolean isImmutable()
Gets if this database is immutable or not.

21

boolean isPending(int blockID)
Gets if data has been written into the block since last read.

29

void read(int blockID, byte[] data)
Fills the given array with data from the block with the given ID.

23

void read(int blockID, byte[] data, int destOffset)
Fills the given array with block.length bytes from the block with the given ID.

23

double readDouble(int blockID)
Reads eight input bytes from the block with the given ID and returns a double value.

The way the double is built from the eight bytes is platform dependent. 25

float readFloat(int blockID)
Reads four input bytes from the block with the given ID and returns a float value.

The way the float is built from the four bytes is platform dependent. 24

int readInt(int blockID)
Reads four input bytes from the block with the given ID and returns an int value.

The way the int is built from the four bytes is platform dependent. 24

long readLong(int blockID)
Reads eight input bytes from the block with the given ID and returns a long value.

The way the long is built from the eight bytes is platform dependent. 24

Object readObject(int blockID)
Invokes the readObject method of the SPReader registered for the block with the given ID.

25

void reset(int blockID)
Resets data of the block with the given ID.

After execution of this method, isDataAvailable(int) method would return false (unless data were written
after calling reset(int) and before calling isDataAvailable(int)).

30

void setReader(int blockID, SPReader reader)
Registers the given SPReader to de-serialize objects from the block with the given ID.

If an SPReader is already defined for the block, it is replaced by the given SPReader.
25

void setWriter(int blockID, SPWriter writer)
Registers the given SPWriter to serialize objects into the block with the given ID.

If an SPWriter is already defined for the block, it is replaced by the given SPWriter.
28

Class ShieldedPlug

void waitFor(int blockID)
Causes current thread to wait until another thread write data into the block with the given ID.

If data has been written in the block since last read, this method returns immediately.
29

int[] waitFor(int[] blockIDs)
Causes current thread to wait until another thread write data into at least one block from the blocks

with the given IDs.
If data has been written in one block since last read from it, this method returns immediately.

29

void write(int blockID, byte[] data)
Writes block length bytes from the specified byte array to the block with the given ID.

The write(blockID, data) method has the same effect as:
26

void write(int blockID, byte[] data, int srcOffset)
Writes block length bytes from the specified byte array to the block with the given ID.

Element data[destOffset] is the first byte written to the block.
26

void writeDouble(int blockID, double value)
Writes a double value, which is comprised of eight bytes, to the block with the given ID.

The way the double is written from the eight bytes is platform dependent. 28

void writeFloat(int blockID, float value)
Writes a float value, which is comprised of four bytes, to the block with the given ID.

The way the float is written from the four bytes is platform dependent. 27

void writeInt(int blockID, int value)
Writes an int value, which is comprised of four bytes, to the block with the given ID.

The way the int is written from the four bytes is platform dependent. 27

void writeLong(int blockID, long value)
Writes a long value, which is comprised of eight bytes, to the block with the given ID.

The way the long is written from the eight bytes is platform dependent. 27

void writeObject(int blockID, Object o)
Invokes the writeObject method of the SPWriter registered for the block with the given ID.

28

Method Detail

getDatabase

public static ShieldedPlug getDatabase(int ID)

Returns the database defined at the given ID.

Parameters:
ID - the identification number of the requested database

Returns:
the database with the given ID

Throws:
IllegalArgumentException - if no database is defined with the given ID

createDatabase

public static ShieldedPlug createDatabase(int ID)

Creates a new empty database with the given ID.

Class ShieldedPlug

Parameters:
ID - the identification number of the created database

Returns:
the created database

Throws:
IllegalArgumentException - if a database with the given ID already exists
SecurityException - if the platform cannot create dynamically databases

isImmutable

public boolean isImmutable()

Gets if this database is immutable or not.

Returns:
true if no block can be added or remove to this database, false otherwise

delete

public void delete(int blockID)

Deletes the block with the given ID.

Parameters:
blockID - the ID of the block to delete

Throws:
IllegalArgumentException - if no block is defined with the given ID
SecurityException - if this database is immutable

create

public void create(int blockID,
 int length,
 int maxTasks)

Creates a block with the given ID.

Parameters:
blockID - the ID of the block to create
length - the length in bytes of the block to create
maxTasks - maximum number of tasks that can wait at the same time for a modification of the block

Throws:
IllegalArgumentException - if a block is already defined with the given ID
SecurityException - if this database is immutable

create

public void create(int blockID,
 int length)

Creates a block with the given ID. An unlimited number of tasks will be able to wait at the same time for a
modification of the block.

Class ShieldedPlug

Parameters:
blockID - the ID of the block to create
length - the length in bytes of the block to create

Throws:
IllegalArgumentException - if a block is already defined with the given ID
SecurityException - if this database is immutable

getID

public int getID()

Gets the ID of this database.

Returns:
the ID of this database

getSize

public int getSize()

Gets the number of blocks of this database.

Returns:
the number of blocks in this database

getIDs

public int[] getIDs()

Gets the list of IDs of the blocks available in this database.

Returns:
the list of the IDs of the blocks available in this database

getLength

public int getLength(int blockID)

Returns the length of the block with the given ID.

Parameters:
blockID - the ID of the block

Returns:
the length in bytes

Throws:
IllegalArgumentException - if no block is defined with the given ID

getMaxTasks

public int getMaxTasks(int blockID)

Class ShieldedPlug

Gets the maximum number of tasks that can wait at the same time on the block defined with the given ID.

Parameters:
blockID - the ID of the block

Returns:
the maximum number of tasks that can wait at the same time on the block defined with the given ID, or -1 if
infinite

Throws:
IllegalArgumentException - if no block is defined with the given ID

read

public void read(int blockID,
 byte[] data)
 throws EmptyBlockException

Fills the given array with data from the block with the given ID. The number of bytes read is equal to the length of the
block.
The read(blockID, data) method has the same effect as:

 read(blockID, data, 0)

Parameters:
blockID - the ID of the block
data - the buffer into which the data is read

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if data.length is lower than block length

read

public void read(int blockID,
 byte[] data,
 int destOffset)
 throws EmptyBlockException

Fills the given array with block.length bytes from the block with the given ID. The first byte read is stored into
element data[destOffset].

If destOffset is negative or destOffset + block length is greater than the length of the array data, then an
IndexOutOfBoundsException is thrown.

Parameters:
blockID - the ID of the block
data - the buffer into which the data is read
destOffset - the start offset in array data at which the data is written

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if destOffset is negative or if data.length is lower than
destOffset + block length

Class ShieldedPlug

readInt

public int readInt(int blockID)
 throws EmptyBlockException

Reads four input bytes from the block with the given ID and returns an int value.
The way the int is built from the four bytes is platform dependent.

This method is suitable for reading bytes written by the writeInt method.

Parameters:
blockID - the ID of the block

Returns:
the int value read

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not four bytes

readLong

public long readLong(int blockID)
 throws EmptyBlockException

Reads eight input bytes from the block with the given ID and returns a long value.
The way the long is built from the eight bytes is platform dependent.

This method is suitable for reading bytes written by the writeLong method.

Parameters:
blockID - the ID of the block

Returns:
the long value read

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not height bytes

readFloat

public float readFloat(int blockID)
 throws EmptyBlockException

Reads four input bytes from the block with the given ID and returns a float value.
The way the float is built from the four bytes is platform dependent.

This method is suitable for reading bytes written by the writeFloat method.

Parameters:
blockID - the ID of the block

Returns:
the float value read

Class ShieldedPlug

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not four bytes

readDouble

public double readDouble(int blockID)
 throws EmptyBlockException

Reads eight input bytes from the block with the given ID and returns a double value.
The way the double is built from the eight bytes is platform dependent.

This method is suitable for reading bytes written by the writeDouble method.

Parameters:
blockID - the ID of the block

Returns:
the double value read

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not height bytes

readObject

public Object readObject(int blockID)
 throws EmptyBlockException

Invokes the readObject method of the SPReader registered for the block with the given ID.
The SPReader is responsible for the de-serialization of the object from the block.

Parameters:
blockID - the ID of the block

Returns:
the object read from the block

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
NullPointerException - if no SPReader has been registered for the block
IndexOutOfBoundsException - if block length is lower than the size needed for object de-serialization

setReader

public void setReader(int blockID,
 SPReader reader)

Registers the given SPReader to de-serialize objects from the block with the given ID.
If an SPReader is already defined for the block, it is replaced by the given SPReader.

Parameters:
blockID - the ID of the block
reader - the SPReader

Class ShieldedPlug

Throws:
IllegalArgumentException - if no block is defined with the given ID

getReader

public SPReader getReader(int blockID)

Gets the SPReader used to de-serialize objects from the block with the given ID.
If no SPReader is defined for the block, null is returned.

Parameters:
blockID - the ID of the block

Returns:
the SPReader set or null if none

Throws:
IllegalArgumentException - if no block is defined with the given ID

write

public void write(int blockID,
 byte[] data)

Writes block length bytes from the specified byte array to the block with the given ID.
The write(blockID, data) method has the same effect as:

 write(blockID, data, 0)

Parameters:
blockID - the ID of the block
data - the data to write

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if data.length value is lower than block length

write

public void write(int blockID,
 byte[] data,
 int srcOffset)

Writes block length bytes from the specified byte array to the block with the given ID.
Element data[destOffset] is the first byte written to the block.

If destOffset is negative, or destOffset + block length is greater than the length of the array data, then an
IndexOutOfBoundsException is thrown.

Parameters:
blockID - the ID of the block
data - the data to write
srcOffset - the start offset in the data

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if destOffset is negative or if data.length is lower than offset +
block length

Class ShieldedPlug

writeInt

public void writeInt(int blockID,
 int value)

Writes an int value, which is comprised of four bytes, to the block with the given ID.
The way the int is written from the four bytes is platform dependent.

The bytes written by this method may be read by the readInt method, which will then return an int equal to value.

Parameters:
blockID - the ID of the block
value - the int value to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not four bytes

writeLong

public void writeLong(int blockID,
 long value)

Writes a long value, which is comprised of eight bytes, to the block with the given ID.
The way the long is written from the eight bytes is platform dependent.

The bytes written by this method may be read by the readLong method, which will then return a long equal to
value.

Parameters:
blockID - the ID of the block
value - the long value to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not eight bytes

writeFloat

public void writeFloat(int blockID,
 float value)

Writes a float value, which is comprised of four bytes, to the block with the given ID.
The way the float is written from the four bytes is platform dependent.

The bytes written by this method may be read by the readFloat method, which will then return a float equal to
value.

Parameters:
blockID - the ID of the block
value - the float value to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not four bytes

Class ShieldedPlug

writeDouble

public void writeDouble(int blockID,
 double value)

Writes a double value, which is comprised of eight bytes, to the block with the given ID.
The way the double is written from the eight bytes is platform dependent.

The bytes written by this method may be read by the readDouble method, which will then return a double equal to
value.

Parameters:
blockID - ID of the block
value - the double value to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if block length is not eight bytes

writeObject

public void writeObject(int blockID,
 Object o)

Invokes the writeObject method of the SPWriter registered for the block with the given ID.
The SPWriter is responsible for the serialization of the object into the block.

Parameters:
blockID - the ID of the block
o - the object to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
NullPointerException - if no SPWriter has been registered for the block
IndexOutOfBoundsException - if block length is lower than the size needed for object serialization

setWriter

public void setWriter(int blockID,
 SPWriter writer)

Registers the given SPWriter to serialize objects into the block with the given ID.
If an SPWriter is already defined for the block, it is replaced by the given SPWriter.

Parameters:
blockID - the ID of the block
writer - the SPWriter

Throws:
IllegalArgumentException - if no block is defined with the given ID

getWriter

public SPWriter getWriter(int blockID)

Class ShieldedPlug

Gets the SPWriter used to serialize objects into the block with the given ID.
If no SPWriter is defined for the block, null is returned.

Parameters:
blockID - the ID of the block

Returns:
the SPWriter set or null if none

Throws:
IllegalArgumentException - if no block is defined with the given ID

waitFor

public void waitFor(int blockID)
 throws InterruptedException

Causes current thread to wait until another thread write data into the block with the given ID.
If data has been written in the block since last read, this method returns immediately.

Parameters:
blockID - the ID of the block

Throws:
InterruptedException - if another thread has interrupted the current thread The interrupted status of the
current thread is cleared when this exception is thrown
IllegalArgumentException - if no block is defined with the given ID
TooManyWaitingThreadsException - if too many threads are waiting for new data

waitFor

public int[] waitFor(int[] blockIDs)
 throws InterruptedException

Causes current thread to wait until another thread write data into at least one block from the blocks with the given IDs.
If data has been written in one block since last read from it, this method returns immediately.

Parameters:
blockIDs - the list of block IDs

Returns:
the list of IDs of the blocks that has been written

Throws:
InterruptedException - if another thread has interrupted the current thread The interrupted status of the
current thread is cleared when this exception is thrown
IllegalArgumentException - if one of the ID does not correspond to an existing block
TooManyWaitingThreadsException - if too many threads are waiting for new data

isPending

public boolean isPending(int blockID)

Gets if data has been written into the block since last read.

Parameters:
blockID - the ID of the block

Returns:
true if data has been written into the block since last read, false otherwise

Class ShieldedPlug

Throws:
IllegalArgumentException - if no block is defined with the given ID

isDataAvailable

public boolean isDataAvailable(int blockID)

Determines whether data in the block with the given ID are available or not.
By default no data is available in a block. When data are written in a block, they remain available until method
reset(int) is called.

Parameters:
blockID - the ID of the block

Returns:
true if data is available in the block false otherwise

Throws:
IllegalArgumentException - if no block is defined with the given ID

reset

public void reset(int blockID)

Resets data of the block with the given ID.
After execution of this method, isDataAvailable(int) method would return false (unless data were written after calling
reset(int) and before calling isDataAvailable(int)).

Parameters:
blockID - the ID of the block

Throws:
IllegalArgumentException - if no block is defined with the given ID

Interface SPReader

Interface SPReader
ej.sp

public interface SPReader

The SPReader interface provides a method for reconstructing objects from a block.

Method Summary Page
Object readObject(ShieldedPlug sp, int blockID)

Reads and returns an object from a block of the given ShieldedPlug.
31

Method Detail

readObject

Object readObject(ShieldedPlug sp,
 int blockID)
 throws EmptyBlockException

Reads and returns an object from a block of the given ShieldedPlug. The class implementing this interface defines how
the object is "read".

Parameters:
sp - the ShieldedPlug from which data is read
blockID - the ID of the block

Returns:
the object read from the ShieldedPlug

Throws:
EmptyBlockException - if no data is available in the block
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if the block length is lower than the size needed for object de-serialization

Interface SPWriter

Interface SPWriter
ej.sp

public interface SPWriter

The SPWriter interface provides a method for serializing objects into a block.

Method Summary Page
void writeObject(ShieldedPlug sp, int blockID, Object o)

Writes an object into a block of the given ShieldedPlug.
32

Method Detail

writeObject

void writeObject(ShieldedPlug sp,
 int blockID,
 Object o)

Writes an object into a block of the given ShieldedPlug. The class implementing this interface defines how the object is
written.

Parameters:
sp - the ShieldedPlug into which data is written
blockID - ID of the block
o - the object to be written

Throws:
IllegalArgumentException - if no block is defined with the given ID
IndexOutOfBoundsException - if the block length is lower than the size needed for object serialization

Class TooManyWaitingThreadsException

Class TooManyWaitingThreadsException
ej.sp

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 ej.sp.TooManyWaitingThreadsException

All Implemented Interfaces:
Serializable

public class TooManyWaitingThreadsException
extends RuntimeException

Signals that too many threads are waiting for a block.

Constructor Summary Page

TooManyWaitingThreadsException()
Builds a TooManyWaitingThreadsException with no detail message.

33

Constructor Detail

TooManyWaitingThreadsException

public TooManyWaitingThreadsException()

Builds a TooManyWaitingThreadsException with no detail message.

	1 Preface to SP 2.0 Profile, ESR0014
	1.1 Who Should Use this Specification
	1.2 How This Specification is Organized
	1.3 Comments
	1.4 Glossary
	1.5 Related Literature
	1.6 Document Conventions
	1.7 Implementation Notes

	2 Introduction
	2.1 General description
	2.2 Genesis
	2.3 Main functionalities

	3 Specification
	3.1 Databases
	3.2 Correspondence between Java and C types
	3.3 Atomicity and execution time
	3.4 Reading data
	3.5 Writing data
	3.6 Notification of modification

	4 Use case
	4.1 Java Code
	4.2 C Code

	5 API
	5.1 C Header File: sp.h

